
FROM LIGHT TO LIGHT: New Concepts & New Technologies

Optical Probing & Control for Brighter Beams

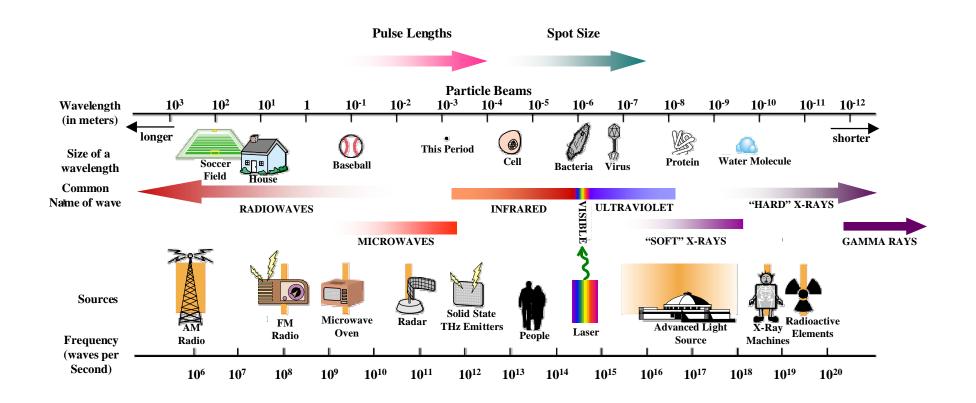
Presented by Swapan Chattopadhyay

ALS October 3, 2000

Outline

- → Motivation for control at optical scale
- → An example of optical slicing
- → Applications of optical probing & control
 - → attosecond slicing
 - pondermotive bunching
 - → laser wakefield
 - → femto-ring
 - → optical stochastic cooling (OSC)
- → Fundamental issues

I deas being developed at the


CENTER FOR BEAM PHYSICS

with contributions from:

- Swapan Chattopadhyay
- John Corlett
- Eric Esarey
- Wim Leemans
- Kem Robinson
- Sasha Zholents
- Max Zolotorev

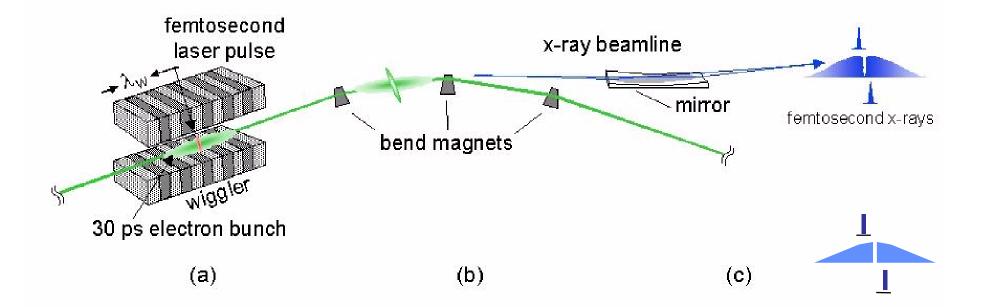
Particle Accelerators to date have taken full advantage of the microwave part of

THE ELECTROMAGNETIC SPECTRUM

rrrrrr

Optical Manipulation of Particle Beams

Today we can complement the GHz microwave rf technology by state-of-the-art short pulse high power compact lasers as work horses for particle accelerators.


However, just as in today's microwave technology involving beam manipulation over fractions of mms in time-scales of picoseconds at frequencies of GHz, one would have to learn to manipulate and control signals and particles at optical wavelengths of microns, in time-scales of femtoseconds and at frequencies of THz and higher in order to take advantage of today's optical technology.

The development of femtosecond kickers, choppers, bunch rotators etc., and THz manipulation of beams will be one of the most challenging jobs for future beam applications.

We are encouraged by our recently successful experimental experience.

Laser Femto-slicing of Electron Beams

Reference:

Generation of Femtosecond Pulses of Synchrotron Radiation

R. Schoenlein, S. Chattopadhyay, H.H.W. Chong, T.E. Glover, P.A. Heimann, C.V. Shank, A.A. Zholents, M.S. Zolotorev Science, Vol. 287, No. 5461, March 24, 2000, p. 2237.

- **→** Unique experiment in the world.
- → Optical Manipulation of Beams

Applications of Optical Control

- Beam slicing
- Femto-second and atto-second control $(10^{-15} s)$ $(10^{-18} s)$
- Optical diagnostics of beam granularity in phase space
- Luminosity control
- Optical stochastic cooling of phase space:

Unstable particles: Muons for neutrino sources & muon collider

Hadrons: for very large hadron collider

Attosecond Electron Bunches

for coherent ionization and excitation of atoms

Attosecond Pulses

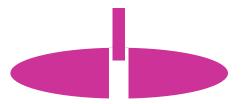
 10^{-18} seconds $\stackrel{\sim}{<}$ τ $\stackrel{\sim}{<}$ 10^{-15} seconds

Femtosecond Laser

Attosecond Electron Beam Pulse

Attosecond Light and X-rays

allows pump-probe experiments @ 10⁻¹⁷ second scale


- Novel interactions of attosecond pulses with atoms/molecules/bulk matter
 - Exotic and complex excitation of atoms into "quantum entangled states"
 - Coherent Ionization of Atom
- Temporally coherent attosecond hard x-rays (10 keV) via Self Amplification of

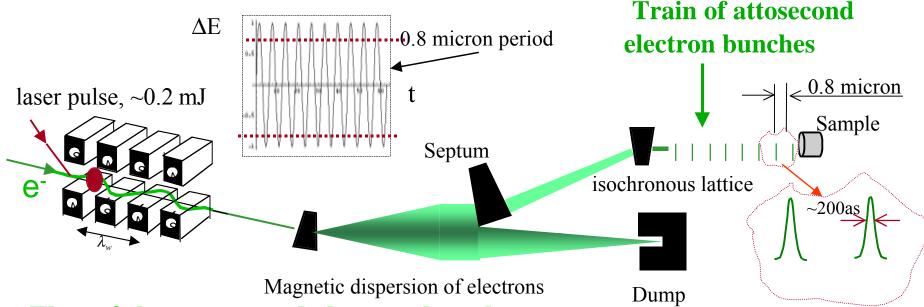
Spontaneous Emission (SASE)

Techniques and Applications

Atto-slicing:

 Possibilities with ALS or a stand-alone linac with reasonable effort + \$

Atto-bunching:



Ponderomotive acceleration

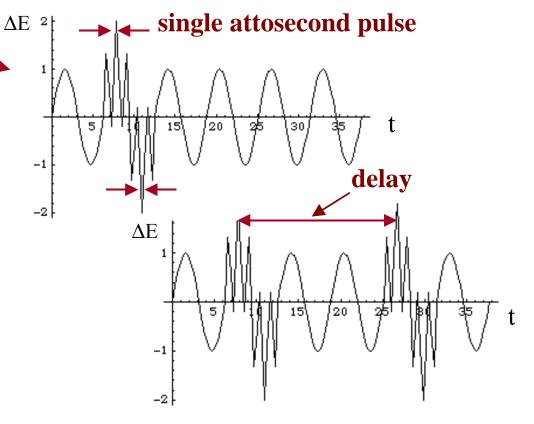
Atto-Slicing: Laser Slicing Technique

Flux of the attosecond electron bunches: train of ~100 bunches, ~ 10^6 e/bunch, 10 kHz rep. rate

- Energy modulation was demonstrated at the ALS for femtosecond x-ray generation
- Micro-bunching at 10 μm was demonstrated at ATF/BNL
- Electron pulse separation (slicing) down to 0.1 µm must be studied

Laser Slicing Technique (cont'd)

One can also obtain:

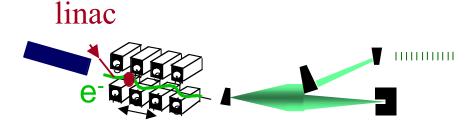

• Two micro-bunch trains using top and bottom peaks of the energy modulation

• Single attosecond electron bunch by combining the energy modulation

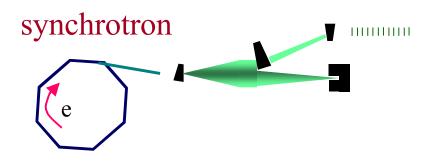
from two lasers

 Pulses with variable delay using top and bottom peaks

• Pulses with a given delay



Laser Slicing Technique (cont'd)


Source of electrons:

1) SC rf linac: ~100 MeV, 10 nC, 5 mm-mrad, 10kHz

(higher average flux, shorter pulses)

2) Synchrotron (ALS?): ~1500 MeV, 300x1nC, 5 mm-mrad, 1 kHz, continues injection

(better transverse emittance)

Laser Slicing Technique (cont'd)

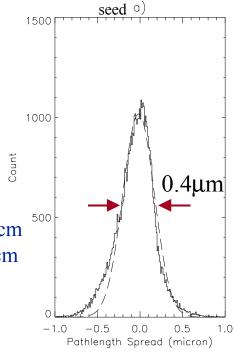
Test of isochronicity

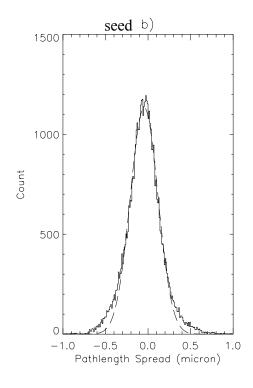
Errors:

Quadrupole gradient : $\Delta G/G=1x10^{-3}$

Bending field: $\Delta B/B=1x10^{-3}$

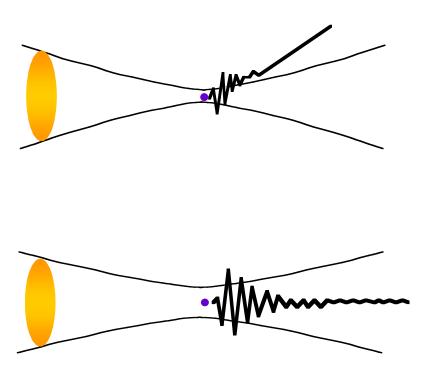
Sextupole gradient: $\Delta S/S=1x10^{-3}$


Tilt angle: 0.2 mrad

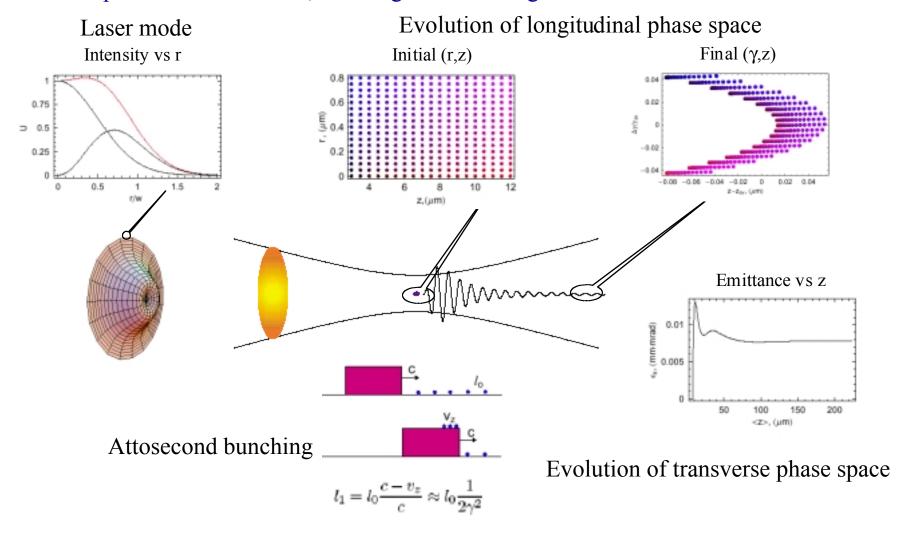

Misalignment: 150 μm

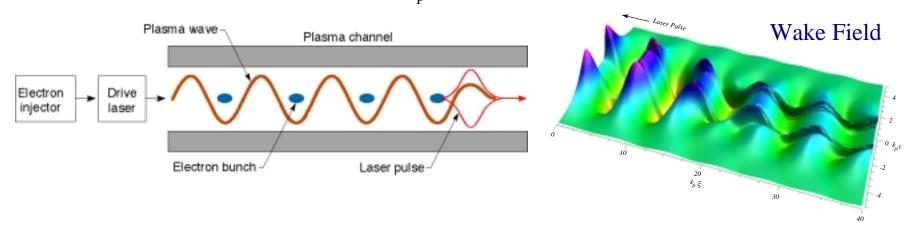
Multipoles: $\Delta G/G=1 \times 10^{-4}$ at r=3cm

 $\Delta B/B = 1 \times 10^{-4} \text{ at r} = 3 \text{ cm}$

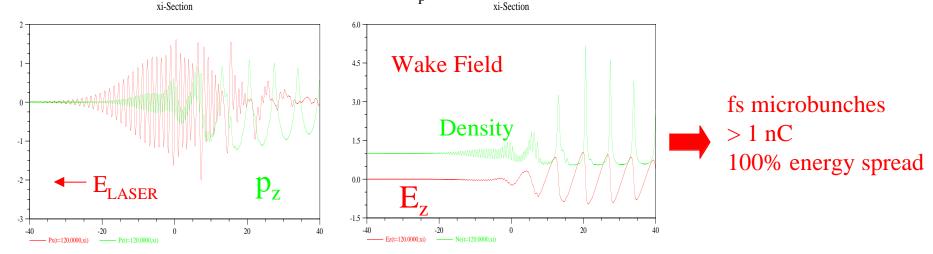

Power supply ripple: $1x10^{-4}$

Acceleration and Scattering in Intense Laser Field

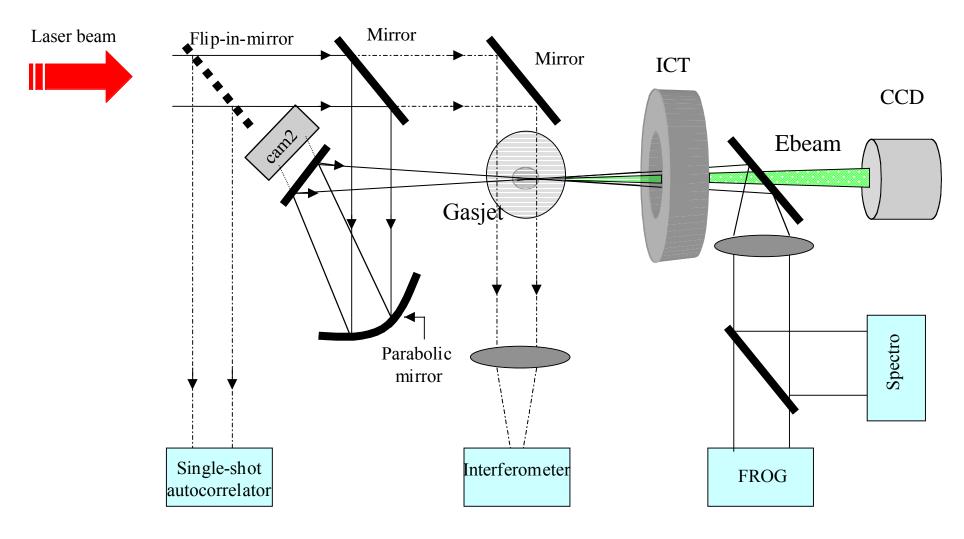

To obtain a high-brightness beam, we want to avoid Scattering during acceleration


Atto-Bunching:

Dynamics of Ponderomotive Laser Acceleration

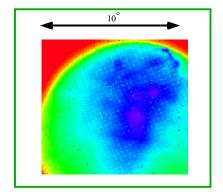

Laser provides acceleration, focusing and bunching

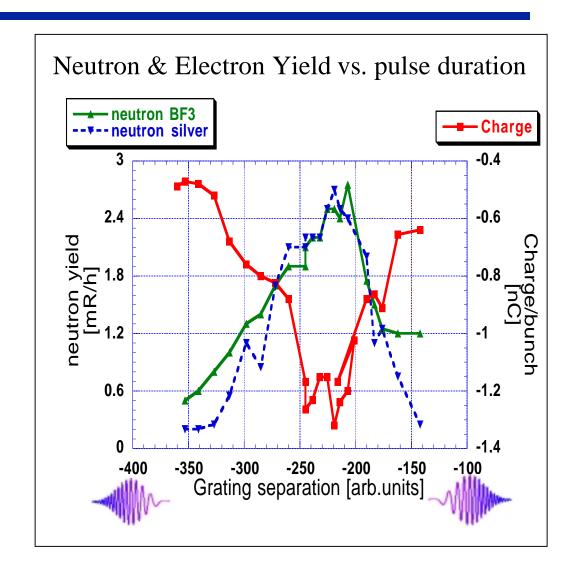
Standard LWFA: Resonant density (L= λ_p), controlled wake, externally injected electrons



Self-Modulated LWFA: High density (L> λ_p), wake via instability, self-trapped electrons

Experimental Set Up: Optical Diagnostics





High Energy E-Beam Observed using Self-Modulated LWFA

Electron Beam Images

Table-Top Coherent SASE X-Ray FEL using a Laser Wiggler

FEL X-ray wavelength

$$\lambda_{x} = \frac{\lambda_{w}}{4\gamma^{2}} (1 + a^{2})$$

Inverse gain length

$$\frac{1}{2\pi M_g} \approx \frac{1}{1+\epsilon_b/\epsilon_x} \sqrt{\frac{1}{2\gamma} \frac{1}{l_A} \frac{a^2}{1+a^2}}$$

Electron beam parameters

Transverse coherence requirement

$$N_e = 10^6$$
, $c\tau_e = 10^{-6}$ cm, $\epsilon_{nb} = 10^{-6}$ cm rad

$$\varepsilon_{\rm nh} = 10^{-6}$$
 cm rad

$$\varepsilon_{\rm b} / \varepsilon_{\rm x} < 10$$

Examples

SASE
$$E_x=10 \text{ keV}$$

THz source (
$$\lambda_w$$
=100 μ m)
 γ = 500 (250 MeV)
 E_w =20 J

SASE
$$E_v = 10 \text{ keV}$$

$$CO_2 \ laser \ (\lambda_w = 10 \ \mu m)$$

$$\gamma = 160 \ (80 \ MeV)$$

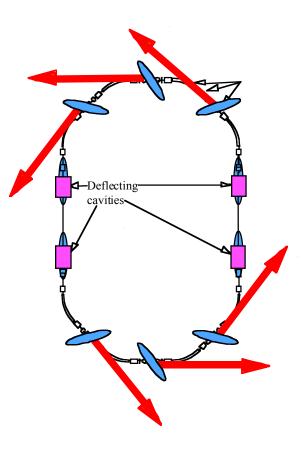
$$E_w = 4 \ J$$

$$N_x = 2x10^8$$

SASE
$$E_x=1 \text{ keV}$$

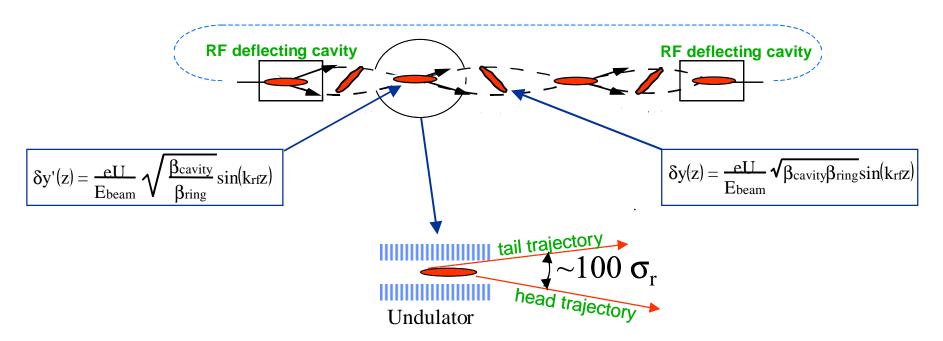
Ti laser (
$$\lambda_w$$
= 0.8 μ m)
 γ = 13 (6.5 MeV)
 E_w =30 mJ
 N_X = 2x10⁸

 $N_{\rm x} = 6 \times 10^8$


Dedicated Permanent magnet Synchrotron Light Source for Ultra-fast X-ray Science

Berkeley Lab proposal for novel next generation synchrotron light source

- Dedicated facility for ultra-fast X-ray science
 - —Short pulse duration (~ 100 fs)
 - —Large flux (\approx ALS)
 - —High brightness (\approx ALS)
 - —Large, multi-user facility
 - —Improvement over existing facilities
- Fundamental time scales
 - Vibrational period of atoms
 - Fast phase transitions
 - Kinetic pathways of chemical reactions
 - Biological processes



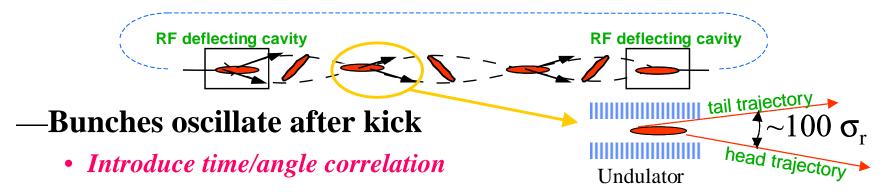
Lattice concept

RF-deflection - a Novel AFRD Idea to Rotate Bunches in a Synchrotron Light Source

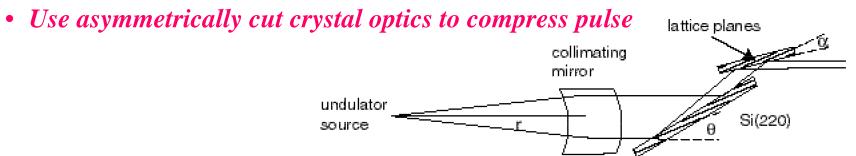
Take into account:

- Electron beam: size & divergence
- Radiation: diffraction limited size & opening angle

$$\frac{-eU}{_{beam}} \geq \frac{M}{k_{rf}\sigma_{z}} \frac{\sqrt{\epsilon_{y}}}{\beta_{rf}} \sqrt{1 + \left(\frac{\sigma_{r'}}{\sigma_{y'}}\right)^{2}}$$


$$\frac{eU}{\text{beam}} \ge \frac{M}{k_{rf}\sigma_z} \frac{\sqrt{\epsilon_y}}{\beta_{rf}} \sqrt{1 + \left(\frac{\sigma_r}{\sigma_y}\right)^2}$$

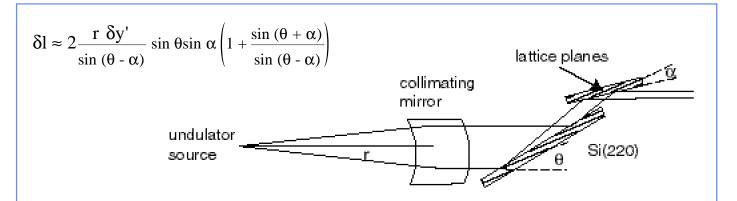
U is the cavity voltage, M is the number of resolvable sub-picosecond "slices", $\sigma_{r'}$ is the radiation opening angle, $\sigma_{v'}$ is the electron beam divergence



RF-deflection - a novel AFRD idea to rotate bunches in a synchrotron light source

- RF cavities operating in TM_{110} mode "rotate" electron bunches
 - —Linear deflection of particles along bunch
 - —Head and tail of electron bunches receive opposite kicks

—~ 100 fs effective bunch length at radiation source point

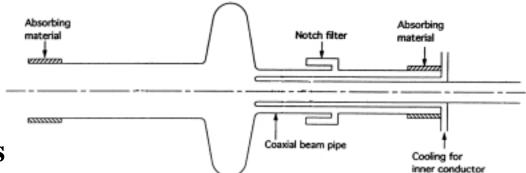

Serve many beamlines simultaneously

A multi-user facility

- This technique can serve many beamlines simultaneously with a single set of the RF "crab" cavities
- Femtosecond pulses are obtained from all electron bunches
- x-ray pulse compression to ~100 fs using asymmetrically cut

crystal

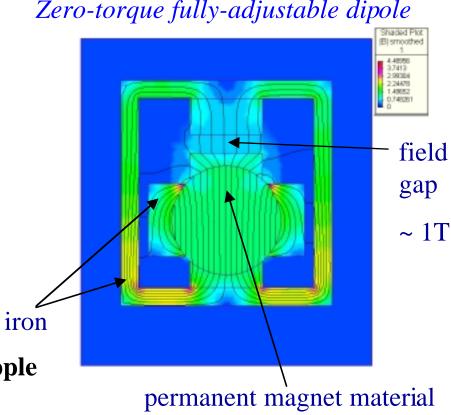
- Flux of the femtosecond x-rays utilized in a pump-probe experiment is limited by the repetition rate of the pump laser pulse
 - 2 20 mJ of energy (50 mJ cm⁻²)
 - 500 kHz for 1W laser



Deflecting cavities - a critical technology

- **TM**₁₁₀ mode
 - —Introduces angular kick along individual bunches
 - —1 GHz, 1.5 2.5 MV

$$y'(z) = \frac{eU}{E_{beam}} \sin(k_{rf}z) \qquad \frac{eU}{beam} \ge \frac{M}{k_{rf}\sigma_z} \frac{\sqrt{\epsilon_y}}{\beta_{rf}} \sqrt{1 + \left(\frac{\sigma_{r'}}{\sigma_{y'}}\right)^2}$$

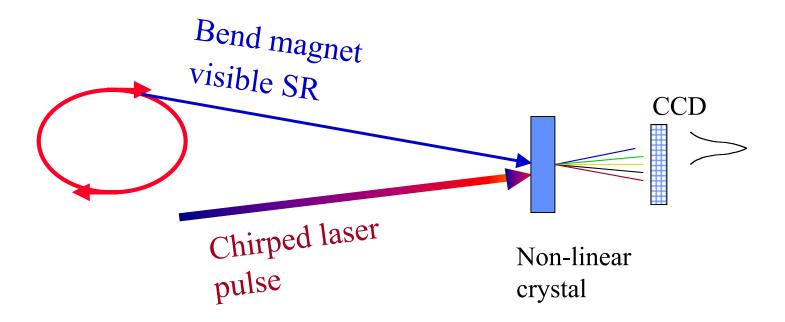

- —Superconducting cavity
 - Deformed "bell" shape

- Damp other cavity modes
 - Higher and lower frequencies
 - − ~ kW HOM power
- Phase stability
 - —Cancel oscillation at second RF cavity

Low-torque variable-field permanent magnet **families**

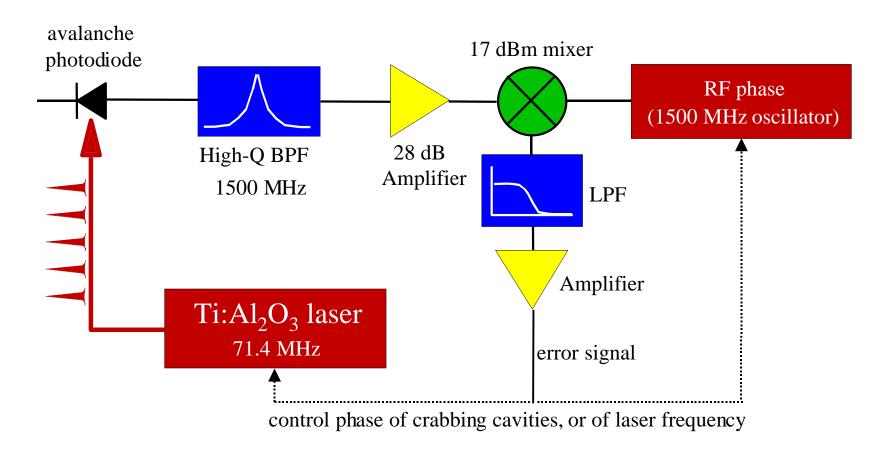
- Recent design concepts by Halbach and Robinson
 - Constant stored energy
 - Simple, inexpensive hardware
- Significant costs savings
 - -Reduced infrastructure
 - Cable plant
 - Power supplies
 - Air conditioning
 - Water coolant
 - -Improved stability
 - No thermal gradients
 - No influence of power supply ripple

rrrrrr


Pump-probe experiments

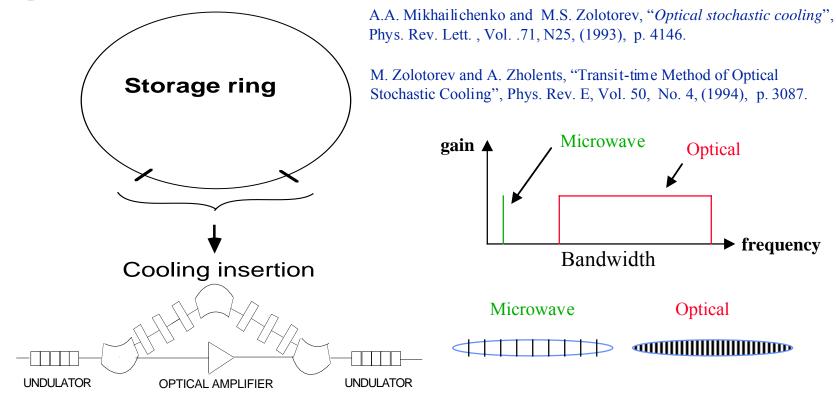
- Flux of the femtosecond x-rays utilized in a pump-probe experiment is limited by the repetition rate of the pump laser pulse
 - 2 20 mJ of energy (50 mJ cm⁻²)
 - 500 kHz for 1W laser
 - Shutter may be used to reduce flux on sample
- ~ 1 ps laser jitter relative to the master clock
- Measure the time of a signal relative to the laser pulse
- Feedback locks system
 - —50 fs jitter
 - Kiewiet et al, Proc. EPAC 2000, Vienna, 2000

Measure the Relative Time between Laser and Synchrotron Radiation


• Jitter of the laser relative the electron bunch can be measured to $dt \sim (10 - 100)$ fs

• 10⁷-10⁸ visible photons are required in a single shot

RF Locking with <100 fs Timing Jitter


 $\Delta t \sim 100 \text{ fs} \longrightarrow \Delta t/T \sim 2x10^{-4} (1500 \text{ MHz})$

50 fs jitter demonstrated

(Kiewiet et al, EPAC 2000, Vienna, 2000)

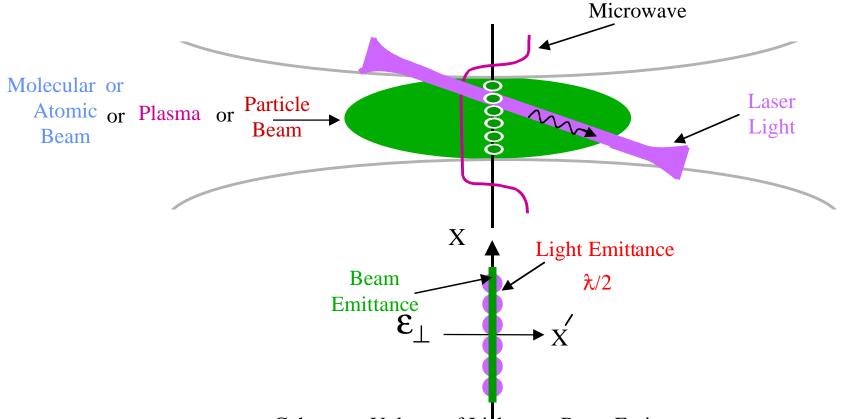
Optical Stochastic Cooling

OSC uses optical amplifier and undulators as a pick-up and a kicker.

The amplifier bandwidth is $\sim 10^{13}$ Hz.

(Compare with $\sim 10^9$ Hz for microwave stochastic cooling)

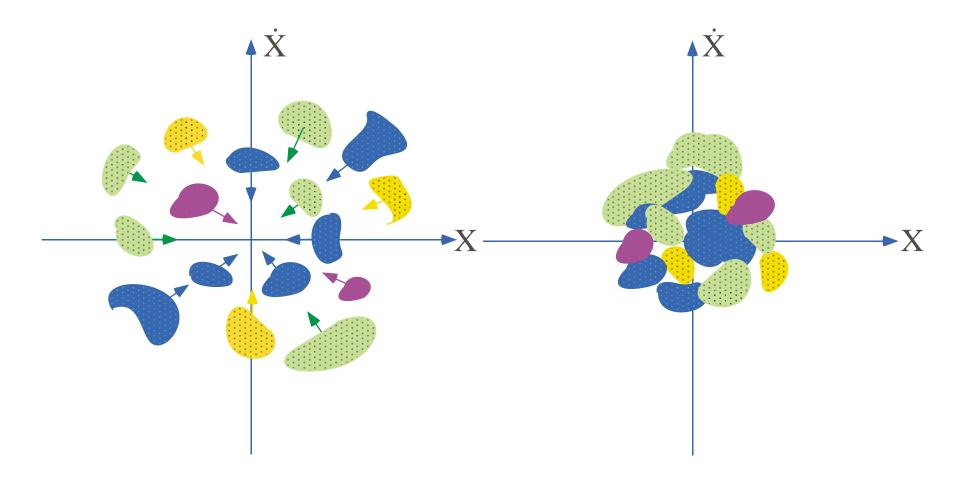
Correspondingly, OSC has a potential for ~10⁴ faster damping.



Particle Beam is fully Resolved in Space & Time by Light Beam

Cooling Rate $<\tau>^{-1}$ α Degree of Control in Phase Space

Number of Independent α Phase Space Samples Probed


Cooling Time $\propto N_s \equiv$ No. of Particles in a Sample

Coherence Volume of Light << Beam Emittance

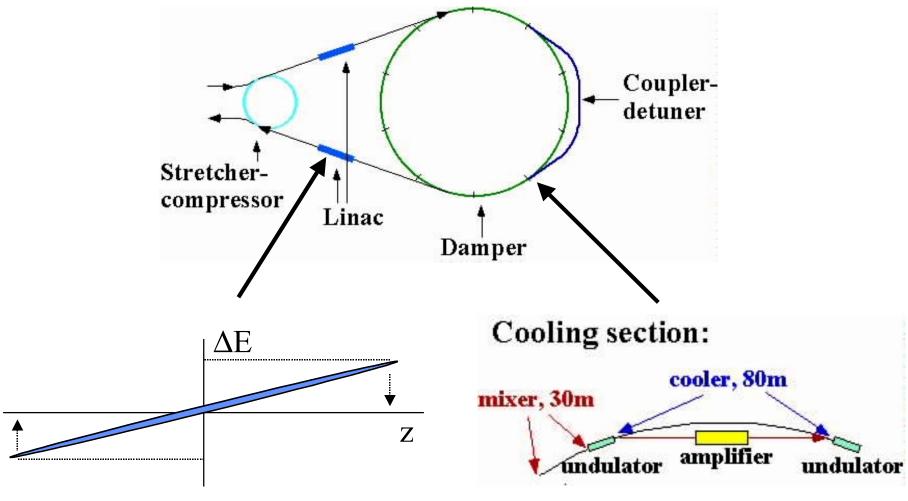
Phase-Space Cooling in Any One Dimension

A Particular List of Parameters for a 2 TeV x 2 TeV Muon Collider Utilizing Optical Stochastic Cooling

	Units	This Study	CDR Ref.[8]
Beam energy	TeV	2	2
Circumference	km	8.08	8.08
Number of muons		4.5×10^8	$2x10^{12}$
Number of bunches of each sign	n	2	2
Beta-function at the IP	μm	10	3000
Bunch length	μm	10	3000
Peak current	kA	2	32
Transverse beam size at the IP	μm	$1.3x10^{-3}$	3
Beam divergence at the IP		$1.3x10^{-4}$	$1x10^{-3}$
Beam energy spread		$1x10^{-3}$	$7x10^{-4}$
Beam-beam parameter		0.15	0.045
Repetition rate	Hz	200	15
Luminosity	Cm ⁻² s ⁻¹	1×10^{35}	1×10^{35}

Parameters for Muon Cooling

	Units	Value
Beam energy	GeV	100
Repetition rate	Hz	200
Input beam characteristics		
Number of muons		$3x10^9$
Transverse emittance	cm-rad	$2x10^{-3}$
Longitudinal emittance, $\gamma \sigma_z \sigma_e$	cm	20
Beam energy spread, $\sigma_{\rm e}$		$1x10^{-3}$
Bunch length, σ_z	cm	20
Stretcher-compressor		
Circumference	m	300
Momentum compaction		0.33
Induction linac		
Pulse duration	μs	1
Energy gain	MeV	<u>+</u> 125
Damping rings		
Circumference	m	1100
Number of rings		3
Number of injected muons		$2x10^9$
Beam energy spread, σ_e		$2x10^{-6}$



Parameters for Muon Cooling, cont'd

KELEY LAB	Units	Value
Bunch length, σ_z	m	100
Number of sample particles		25
Longitudinal damping time	turns	75
Transverse damping time	turns	30
Undulator period	cm	50
Peak undulator field	T	10
Number of periods		14
Dispersion function	m	100
Beta function	m	2
Optical amplifier		
Number of amplifiers		10
Amplified light energy	J	1
Average output power	\mathbf{W}	200
Amplitude gain		3.8×10^4
Wavelength	nm	800
Output beam characteristics		
Number of beams		4.5×10^{8}
Transverse emittance	cm-rad	$3x10^{-7}$
Longitudinal emittance	cm	$2x10^{-2}$
Cooling time	ms	4

A Scheme for Optical Stochastic Cooling of Muons

We expect:
$$<\tau>^{-1} \sim \frac{1}{[N_s]}$$
 cooling time

But, in practice, there is always amplifier noise which modifies cooling rate to:

$$<\tau>^{-1}$$
 $\sim \frac{1}{[N_s+N_n]}$

where $N_n \equiv$ sample population that can generate a noise signal equivalent to the optical amplifier noise

 \longrightarrow What is N_n ?

Each particle emits ' α ' photons per turn, where $\alpha \equiv$ fine structure constant ~ 1/137

Total no. of equivalent noise photons is $\sim \alpha N_n$

Theoretical minimum of optical amplifier noise is one noise photon per optical mode:

$$\alpha N_n \sim 1 \Rightarrow N_n = 1/\alpha$$

$$<\tau>^{-1}$$
 \simeq $\frac{1}{[N_s + (1/\alpha)]}$

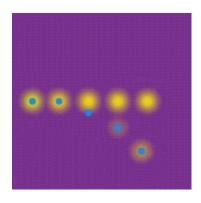
For large sample population, $N_s \sim 10^7 - 10^9$, the number of equivalent photons from sample and amplifier:

$$N_p = \alpha N_s + \alpha N_n \sim (10^5 - 10^7) + 1 >> 1.$$

This large no. of photons generate an electric field in the far-field regime which is describable as classical light

Large "degeneracy parameter": large number of photons in a coherence volume

For small sample population, $N_s \sim 50 - 100$, the number of equivalent photons from sample and amplifier: $N_p \sim (0.5 - 1) + 1 \sim O(1)$.


These few photons generate a field which is intrinsically non-classical and quantum mechanical.

Small "degeneracy parameter": small number of photons in a coherence volume

How does stochastic cooling work in this quantum limit ??

Radiation for Charged Particles— A Simple Physical Vision

http://www.lbl.gov/educational sites/The World of Beams

Understanding "Quantum Optics" driven by accelerated changes would be critical in these studies